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A stochastic process describing the behavior of the solid-on-solid interface in a 
strip of width L is studied. The invariant and reversible measure for the process 
is the Gibbs state with Hamiltonian H =  Z [q(x)-  tt(x + 1 )[. Under "free" boun- 
dary conditions, we show that the height of the moving interface at any site 
converges, when suitable renormalized, to Brownian motion with a diffusion 
coefficient proportional to L x. 
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1. I N T R O D U C T I O N  

The statistical mechanics of the interface between two different fluids or 
materials has been studied in recent years. (11'14'15'8'5) The solid-on-solid 
model (13) has been reviewed by Fr6hlich et aL ~8) In this model the interface 
is a function ~/: Z a-  I ~ Z. The Gibbs state corresponds to the Hamiltonian 
Zlx-yl-~ [q(x)-~1(y)J, with x, y in AL, a square box of side 2 L +  1 con- 
tained in Z a-1. A roughening transition occurs for two-dimensional inter- 
faces: when d -  1 = 2, the interface is rigid for sufficiently low temperatures 
and fluctuates logarithmically for high temperatures. (9'1~ For more than 
three dimensions the interface remains rigid. (3) In two dimensions 
jq(x) - r / ( y ) [  behaves like [ x -  y[ 1/2 as a consequence of the fact that, under 
the Gibbs measure, {tl(X)--q(X+I)}x~AL is a family of independent 
random variables. Gallavotti, (14) and Aizenman (~) show a similar behavior 
of the interface for the (more difficult) two-dimensional Ising model. 
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In this paper I construct a stochastic process having as reversible 
measure the Gibbs state of the solid-on-solid model described above. For 
d =  2 and fixed L, under free (or periodic) boundary conditions, I prove in 
Theorem 2.1 that, appropriately renormalized, the interface behaves rigidly 
as nondegenerate Brownian motion. More precisely, if the position of 
the interface at time t at site x is denoted q,(x), we prove that, as ~ ~ 0, 
the process et/g 2,(0) converges to nondegenerate Brownian motion with 
diffusion coefficient (proportional to) IALI-1 and that under this renor- 
realization the difference between the interface at any two different sites 
converges in probability to zero. The result is less satisfactory in dimension 
d>~ 3: I am able to prove convergence to Brownian motion, but do not 
know how to prove that the diffusion coefficient is positive. Herbert Spohn 
showed to me that this result is immediate in the continuous case (see the 
discussion in Section 5). 

In the infinite-volume case, in any dimension, under the hypothesis of 
existence of the infinite-volume Gibbs state, I show that the interface at a 
given site behaves as degenerate Brownian motion (Theorem4.1). This 
result is only partially significant for d =  2: for low temperatures in d =  3 
and for any temperature in d >  3, one can expect the interface to be a 
stationary process in time, even without space renormalization. 

Invariance principles for interfaces have been obtained for one-dimen- 
sional models. Galves and Presutti ~12) showed that the interface of a one- 
dimensional supercritical contact process satisfies a central limit theorem. 
De Masi eta/. (6) have proven an analogous result for the asymmetric sim- 
ple exclusion process. Recently Schinazi ~16) proved an invariance principle 
for the interface of a critical, reversible, semiinfinite, nearest particle system. 

2. THE MODEl. 

The two-dimensional model is defined in an infinite strip CL of base 

A L = { - L  ..... L } c Z  

given by 

C L = A L x Z =  {(x,z):xeAL, zeZ}  

The strip CL is occuppied by two phases separated by a line. The 
assumption of the solid-on-solid (SOS) model is that this line has no 
overhangs, and hence can be defined by a function t/: AL--* Z. The interface 
state space is 
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and the Gibbs measure nL with reciprocal temperature fi is defined by 

ktL(r/) = e /~H(,) (2.1) 

where the Hamiltonian H is given by 

H(r/)= ~ Itl(x)--q(x+ 1)1 
x E  / I  L 

Here and in the sequel we adopt the convention that if y~AL,  but 
Ix--y[ = 1 for s o m e  X~AL, then tl(y)=tl(x). This is what we have called 
"free boundary conditions." The results of this section hold also for 
periodic boundary conditions. 

The total mass given by #L to X is infinity, but #L induces a 
probability measure in a subset of X. Consider the following equivalence 
relation in X: r/ is equivalent to ~ iff there exists a k ~ Z such that r/(x)= 
~(x) + k for all x ~ AL. Identify each r/such that q(O) = O, with its equivalent 
class. In that way the space of the equivalence classes is isomorphic to 

Xo = x ~ {~: ~(0)  = 0}  

We call /~L the probability measure induced by /JL in X o. That is, 

fiL(tl) := #L(t/) (2.2) 
~L(Xo) 

This is well defined because/~L(Xo) is finite. When no confusion arises, we 
write fi instead of ilL" 

Define the continuous-time Markov chain qt on X with transition 
probability function given by 

P(r/,++ : t/x+ I r/, = r/)= 6c(t/, r/x+) + o(6) 

P(rl ,+~=q ~- 1,7, = ~ ) =  6c(q, ,?x- )+o(6)  (2.3a) 

P(tl,+~=~Jq,=q)=o(6), if ~:~r/~-+ 

where c( . , .  ) are nonnegative functions and the configurations t/~+, t/~- ~ X 
are defined by 

q~+ (w) = ft/(w) _+ 1 if w = x (2.3b) 
(t/(w) otherwise 

In order to have/J as reversible measure, the transition rates c(- , . )  must 
satisfy the detailed balance condition 

~(tl)  c(,7, ,jx+ ) = ~,(,?++ ) c ( , l x +  ~) 
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that is, 

c(t/,q x+) e x p [ - f l 2 l ~ l X + ( y ) - t l X + ( y + l ) l ]  
= (2.4a) 

c(tlx+,tl) e x p [ - f l ~ , l t l ( y ) - r l ( y +  l ) l]  

e x p f l [ l { r l ( x ) < r l ( x +  1)} + 1 {q(x) < r / (x -  1)}] 

exp f l [ l { t lX+(x)>t lX+(x+ 1)} + 1 {q~+(x) > t /X+(x-  1)}] 

(2.4b) 

where 1 {- } is the indicator function of the set {. }. An immediate choice for 
c(- , - )  is 

c(~l, ~ l x + ) = e x p f l [ l { ~ l ( x ) < t l ( x +  1)} + l{q(x) < r / (x -  1)}] 

c(tl, ~ C - ) = e x p f l [ l { r l ( x ) > ~ l ( x +  1)} + l{t/(x) > t / ( x -  1)}] 

but this is not the only one. We can impose another condition: we ask that 
the rate of increasing the interface at site x be a linear function of the num- 
ber of neighbors y of x for which t/(y) > t/(x). In other words, defining 

hx(t/) = ~ 1 {t/(y) > q(x)} (2.5a) 
Y: I x -  Y[ = 1 

we ask that 
c(q, ~p+ ) = bhx(q) + c (2.6a) 

for some constants b and c. Analogously, if 

k~O/) = ~ 1 {r/(y) < q(x)} (2.5b) 
Y: ] x - -  Yl = 1 

we ask that 

col, qx-  ) = bkx(~l) + c (2.6b) 

Now, substituting (2.5) in (2.4), we obtain that (2.6) is compatible with 
the detailed balance condition (2.4) if the constants b and c satisfy the 
following relation: 

e ~h hb + c 

e •(2 ~) ( 2 - h ) b + c  

where we have used that kx(~/x+)=2-hx(q) .  Since h can only assume 
values O, 1, 2, we obtain that (2.4) and (2.6) are compatible for all c > 0 
and b satisfying 

We have proven the following lemma: 
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L e m m a  2.1. Let ~ be the Gibbs state with inverse temperature 
/~ > 0 and Hamiltonian H =  Z I t l (x)-  q(x + 1)l. Then there exists a process 
having ~t as reversible measure with rates given by Eq. (2.6). The 
relationship between the inverse temperature and the coefficients b and c of 
Eq. (2.6) is given by Eq. (2.7). 

Let qt be the Markov chain in X defined in Eq. (2.3) with rates given 
by Eqs. (2.6)-(2.7). We prove the following: 

T h e o r e m  2.1. Fix XeAL. Let ~/,(x) be the height of the interface at 
site x at time t. Then: 

(a) For any initial configuration veX,  the process at/,-2,(x) 
converges weakly, as e ~ 0, to Brownian motion with diffusion 
coefficient D. 

(b) The diffusion coefficient is proportional to ]ALl -1. More 
precisely, 

1 
D=~--~L~2 Z #(q) Z 2[c+bl{~l(Y)erl(Y+l)}] 

q~X0 .vEAL 

where/~ is the probability Gibbs state obtained when the inter- 
face at the origin is fixed to be zero [see Eq. (2.2)]. 

(c) For each pair x, yzAL, e~l~ 2,(x)--e~l~ 2,(y) converges in 
probability to zero. 

We prove this theorem in the next section. Theorem 2.1 states that for 
fixed L, 0 </3 < oe, the interface moves rigidly as a nondegenerate Brow- 
nian motion. For zero temperature (/~= oo) the rates are as in Eq. (2.6) 
with any b/> 0 and c = 0, and the diffusion coefficient is zero. For infinite 
temperature the situation is different. In this case b = 0 and c > 0. The inter- 
face at different sites undergoes independent random walks at total rate 2c. 
In the limit as e ~ 0  we obtain independent Brownian motions with 
diffusion coefficient 2c. 

3. P R O O F  OF T H E O R E M  2.1 

A key role in the proof of Theorem 2.1 is played by the process ~t, 
"the interface as seen from an observer localized on the interface at the 
origin," defined by 

~, = ~ t -  ,7,(0) (3.1) 

where the configuration ~ t -q (O)eXo=Xc~{~:  t/(O)=O} is defined by 
(,7 - , ~ ( 0 ) ) ( x )  = ~ ( x )  - , 7 ( 0 ) .  
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The Gibbs state/~ on Xo defined in Eq. (2.2) can be written 

/ ~ ( ~ ) = z - l e x p { - f l  ~ ] ~ ( x ) - r  } (3.2) 
x E A L  

where z is the normalization [so as to have Z/2( t / )=  1]. One checks that 
the probability measure /~ is reversible (therefore invariant) for the con- 
tinuous-time Markov chain ~t on the denumerable space X0. Hence ~ is a 
positive recurrent Markov chain on Xo. Since tit is ergodic (the probability 
of going from one to another state in any fixed time is strictly positive for 
all states), fi is the unique invariant measure for this process. 

Introduce the processes 

M , =  ~ t/,(x) (3.3a) 
x E A  L 

and 

1 
- ~ r/,(x) (3.3b) 

M'  IALIx~A~ 

We interpret M, as the total mass of one of the fluids (which can be 
negative) normalized to be zero when the configuration of the interface is 
identically zero. On the other hand, 33, is the mean value of the interface at 
time t. 

Sketch of the proof of Theorem 2.1. We first show that both M, 
and M, are square-integrable ergodic martingales with respect to the 
filtration generated by ~,, t~>0. If the initial configuration of ~t is dis- 
tributed accordingly to the reversible measure /~, then M, and ~t~, have 
stationary increments. We can then apply an invariance principle for mar- 
tingales. The limit diffusion coefficients are easily bounded above and 
below. To conclude the proof, we observe that, when the initial measure of 
the process is/], 3~r,-th(0 ) is a random variable, whose distribution does 
not depend on t. Hence, as e--*0, e)~r~_2~-er/~_2~(0) goes to zero in 
probability. 

L e m m a  3.1. Both the total mass process M, and the mean value 
process M, are ergodic square-integrable martingales with respect to the 
filtration generated by {r/,: t ~> 0 }. Furthermore, if the initial configuration 
t/ is distributed accordingly to /~--the invariant measure for the process 
~,--then both M, and 3~, have stationary increments. 

Proof. Given a configuration r/e X, the rate of increasing M, by one 
is equal to 
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E [b(l{q(x)>~(x+ 1)} + l{q(x)>q(x- 1)})+c] 
X ~ A L  

= y~ [b ( l {q (x )<q(x+l ) }+l{q (x )<q(x -1 ) } )+c]  
x ~ A  L 

which is the rate of decreasing M, by one. In this way we have proved that 
M~ is a martingale and so is Mr. This is the place where the choice of the 
rates (2.6) is crucial. 

Since the distribution of the increments of M,,  for t ~> s, depends only 
on ~s and fi is stationary measure for 4s, then M, has stationary 
increments. The ergodicity follows from the fact that 4, itself is an ergodic 
Markov chain. 

To prove that it is square integrable, it suffices then to show that 
lim~o(EM~/3) is finite, where E is the expectation of the process 4, 
obtained when the initial configuration is distributed according to/~, 

lim EM~ 

= E f t ( q )  E [c+b(l{q(x)>q(x+l)}+l{q(x)>q(x-1)}) 
tl x ~ A  L 

+c+b(l{q(x)<q(x+ 1)} + l{q(x) < q(x- 1)})] 

=Eft(q) E 2[c+bl{q(x)r l)}] (3.4) 
tl x ~ A L  

which is clearly bounded above by 2(c + b)[AL[. This concludes the proof 
of Lemma 3.1. 

T h e o r e m  3.1. For any fixed initial configuration q GX, the 
processes eM~-2, and e34~-2, converge in distribution to Brownian motion 
with positive diffusion coefficients D M and D~q, respectively. These are 
given by 

DM=Efi(q) E 2[c+bl{q(x)r (3.5) 
rl X ~ A L  

and 

1 
D~= ]--~Lj D M (3.6) 

Proof. As a consequence of Lema 3.1, we can apply the invariance 
principle for martingales, which implies the theorem. We use the almost 
sure version as stated in ref. 4, Section 1. Since fi gives positive mass to 

822/51/'5-6-23 
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each configuration of Xo, we are able to substitute "almost all" for "all 
~/E Xo." But any t/~ X is a translation of some configuration in Xo. The 
translation invariance of the dynamics and the renormalization allow us to 
substitute "all t/~ Xo" for "all q r The expressions for the diffusion 
coefficients [Eqs. (3.5) and (3.6)] are consequence of Eq. (3.4). 

Proof of Theorem 2.1. Part (a). This follows from part (c) and 
Theorem3.1: If for all x,y~AL, ~tL-2,(X)--etl~-2t(y) converges in 
probability to zero, so does etl,-~,(x)-sM,-2,. Since, by Theorem 3.1, 
e/~r ~, converges to Brownian motion with diffusion coefficient DM, so 
does ~t/,_~,(y) for all yeAL. [We hav~ also proven part (b).] Part (c). If 
the initial measure is /], for each pair of sites x, y of AL, th(x)- tl,(y)= 
r162 is a random variable whose distribution is independent of t. 
Then s t / , -~(x)-  ~t/~-2~(y) converges to zero in probability. 

4. THE INFINITE-VOLUME CASE 

The infinite-volume, d-dimensional model is defined in the state space 

X= {~:Z ~ ~ Z }  

We consider the Gibbs state /2 defined on X o = X  n {~/(0)=0} consistent 
with the conditional probabilities: 

fi(~(x)=j(x)[~(y)=j(y), y#  x)=z-!  exp { - f l  y'~ [j(x)-j(y)]} 
y :  I x  - y ]  = 1 

(4.1) 

where j (0) - -0  and j(y) for y # 0 are integer numbers and z is a renormal- 
izing constant. This is defined as the thermodynamic limit, as L ~ ~ ,  of 
the/~L, defined as in Eqs. (2.2) and (3.2). The existence and unicity of the 
limit are immediate for d =  2, since by independence of { t / (x) -  ~(x + 1)}x 
under /~L, one constructs the measure explicitly. For d~> 3 one must show 
some compactness argument/7'8) In the sequel we assume the existence of 
the thermodynamic limit. 

As in the finite case, we construct a stochastic process tl, with 
pregenerator ~ defined on bounded, cylindrical functions f by 

f2f(tl) = ~ {c(x, tl, + )If(t/x+ ) - f ( n ) ]  + c(x, r/, - ) I f ( r /~-)  -- f(r/)]  } 
x E Z  

(4.2) 

For the definitions of r/+ see Eq. (2.3). The rates c(. ,- ,  _ )  are imposed to 
be bounded, positive functions of x and to depend on t/ only through 
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1 {q(x) > rl(y)}, 1 {q(x) < ~/(y)} for y such that ]y - x l  = 1= The existence of 
a process q~, with semigroup S(t) generated by D follows from the fact that 
the process tt(t) can be expressed as a function of a spin system in d dimen- 
sions with bounded rates depending only on the nearest neighbor spins. (s) 
We refer to Liggett (~8) for the construction of the spin system. 

In order to have/~ as reversible measure, we ask the rates to satisfy 

c(x,q,  + ) =exp{-flZIq(x)+l-t/(y)l} 
c(x, qx+, _ )  e x p { - / ?  Z ] r / (x)- t / (y) l  } 

where the sums run over the set {y: [ x - y l  = 1}. We can choose, for 
instance, 

c(x, rl, + )  =exp  flhx(q) 

c(x, rl, - ) = exp fik~(rl) 
(4.3) 

where k and h are defined as in Eq. (2.5). As in the finite case [see 
Eq. (3.1)], we define 

~, = . , -  . , ( 0 )  

Theorem 4.1. Let q, be the process with generator given by (4.2) 
with rates gives by (4.3) and initial distribution fi given by (4.1). Then, as 
e ~ 0, the process 

X~(t) =: eq~-2~(0) (4.4) 

converges to degenerate Brownian motion. That is, it converges in dis- 
tribution to the process with trajectories concentrated in the constant 0. 
Furthermore, 

E(~,(0) 2) 
D o = :  lim = 0  (4.5) 

where the expectation is taken with respect to the process ~, with initial 
measure/Z 

Remark. In the one-dimensional case (d=2) .  Theorem 4.1 states 
that, as expected, lira DL = D o  =0.  The result is not satisfactory. It just 
states that the normalization in Eq. (4.4) yields a trivial result. We conjec- 
ture that in order to get a nontrivial limit one must rescale space by el/2 
instead of e: we expect that el/2t/~ 2, converges, as e ~ 0, to a nondegenerate, 
normal random variable. This conjecture arises when one looks at the 
process of the differences r / , ( x ) -  r/t(x + 1 ), x s Z, which is conservative in 
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the sense that ~x  [ q , ( x ) -  t/,(x + 1)] is constant in time. This is analogous, 
then, to a lattice gas. In fact, the relationship between the simplest model of 
a stochastic lattice gas (nearest neighbor simple exclusion) and a special 
case of the SOS model has been studied in ref. 5 in a finite box. This 
relation can be also established in the infinite volume. In that case it is easy 
to see that the height of the interface at time t at the origin is equal to Jr, 
the total current of simple exclusion particles through the origin in the time 
interval [0, t]. It is known that the right renormalization for the current is 
el/2: el/2J~-zt converges to a nondegenerate normal random variable. (2) The 
same result can presumably be obtained by looking at the fluctuation 
fields (15) and applying an argument given by Spohn (iv) (Remark in Sec- 
tion 2). In dimensions d~> 3 the situation is different: the interface is rigid at 
low temperatures when d =  3 and for any temperature when d >  3. In this 
case the result of Theorem 4.1 is even less satisfactory, as one can expect 
the process t/,(0) to be stationary without space rescaling. 

ProoL The convergence to Brownian motion is a consequence of the 
results of ref. 4. The process q,(0) is antisymmetric and adapted to ~,, 
which has /~ as reversible measure and is ergodic. Then, X~(t) converges 
to Brownian motion with diffusion coefficient given by Do~ defined 
in Eq. (4.5). In order to prove that this limit vanishes, take AL= 
{ - L  ..... L} a-l, and define 

RL.,= ~ q,(x) (4.6) 
X E A L  

and 

1 
/~L.,=I--Z--T ~ tl,(x) (4.7) 

V ~ L I  x e A  L 

These two processes are again antisymmetric and adapted to r and hence 
with the same renormalization converge to Brownian motion with diffusion 
coefficients DR.L and D~,L, respectively. Further, for all L >~ 1, 

D~,L = ]ALl-2DR. L (4.8a) 

and 

D~.L= D~ (4.8b) 

as follows from the fact that, under /~, the differences It t ,(x)-tt ,(y)l  are 
random variables whose distribution is independent of t and hence go to 
zero in probability when renormalized. 
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The next step is to prove that 

D~,c <~ const/lAc[ (4.9) 

In order to prove (4.9), we prove that DR.c~<const x IAL[ and then use 
(4.8). Let ~,  be the a-algebra generated by {r s~< t}, then, 

Re,, = NL,, + qgc(~.s) ds (4.10) 

where NL. , is a stationary, square-integrable martingale with respect to the 
filtration ~ ,  t/> 0, and ~0L is given by ~4) 

q~r(r = lira E [ R c , ,  + ~ - R L , ,  I ~ ]  

= ~ [c(x,~, ,  + ) - c ( x , ~ t , - ) ]  (4.11) 
X ~ A L 

where E is the expectation with respect to the process ~t with initial 
measure ~. Furthermore, 

ENd, ~ = tDu, L 

where 

DN L = l i m  E__L, 6N? 
�9 6 ~ 0  

= lim ER~,~ 

= ~ p[c(x, 4, +) + c(x, 4, - ) ]  
X G  A L 

~< IAc[2B (4.12) 

where B is the upper bound of the rates. 
On the other hand, Eqs. (4.10) and (4.11) and Theorem 2.3 of ref. 4 

imply that 

~ 9 0  

DR, L=D~,L--2 Jo ~l-q,~(t)qq at (4.13) 

where S(t) is the semigroup corresponding to the process 4, which is self- 



1088 Ferrari 

adjoint in L2(/~), by reversibility. Then the integral on the right-hand side 
of Eq. (4.13) is nonnegative and 

DR.L~DN.L <~2BIAL! 

by Eq. (4.12), which concludes the proof of Eq. (4.9) and the theorem is 
shown. 

5. D I S C U S S I O N  

Using the techniques developped in ref. 4 one can prove parts (a) and 
(c) of Theorern 2.1 in any dimensions and for any choice of rates c(., .) 
satisfying the detailed balance condition (2.4). The problem in proving (b) 
is that only in one dimension and for our choice of the rates is the process 
a martingale. In the general case, the diffusion coefficient satisfies an 
equation like (4.13). (4) When the process is a martingale, the second term 
vanishes and the first term gives the diffusion coefficient. The first term can 
be calculated at time t = 0: it is the quadratic variation of the martingale. 
In general, when the process is not a martingale, it is not obvious how to 
prove that the two terms do not cancel. The second term is always negative 
because, by reversibility, S(t) is self-adjoint in L2(/~). 

One could consider a process satisfying (a) and (b) of Lemma 2.8 in 
d/> 2. In this case the total mass process is still a martingale. Unfortunately 
this process does not have a reversible measure, as was noticed by Paola 
Calderoni. The problem left in this case is to prove that the process ~-t has 
an invariant measure. This would show that the martingale has stationary 
increments, and the invariant principle would follow. 

For  other Hamiltonians H=~A[rl(x)-rl(y)[, where A is a non- 
negative, nondecreasing function, we can always construct a process r/t 
having as reversible measure /~ constructed with this Hamiltonian, in a 
square box of radius L. Since E~p 2 < ~ ,  one can apply ref. 4 and show (a) 
and (c) of Theorem 2.1. In any case, it seems that (b) is a difficult problem. 
For  the infinite-volume case even the existence of the process is not clear 
unless the rates are bounded. 

Finally, let us discuss briefly the continuous model. In this case the 
state space is the set of functions r/: AL--* ~. The equation for ~/,(x) is 
assumed to be ~15) 

1 

Y:lY x l = l  

v ' ( l , 7 . ( x )  - , . ( y ) l )  + o-dW(x, t) 

where U(r), r E ~  +, is a symmetric, smooth, convex ( U " > 0 )  function. 
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W(x, t) is a standard Brownian motion. The stationary measures are the 
Gibbs states given by (formally) 

~(dr/)= H dr/(x) exp-fill(x, ~I) 
X ~ A L  

where 

H(x, r/)= ~ U(l~(x)-~l(y)[)  
Y: lY x l -  1 

and fl = 2/a 2. Herbert Spohn showed me that if we define (as in the discrete 
case) M,=Y.x~AL'q,(X), the drift terms cancel and we obtain that M , =  
Z W(x, t), which is just the ordinary Brownian motion. From this, the 
analog of Theorem 2.1 follows for the continuous case. 
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